C++ Tutorial

Quantum states

Generate quantum states

Generate \(n\) qubit quantum states using QuantumState class and initialize it as \(|0\rangle^{\otimes n}\).

#include <cppsim/state.hpp>

int main(){
    unsigned int n = 5;
    QuantumState state(n);
    state.set_zero_state();
    return 0;
}

You can not generate the quantum states if the memory is not sufficient.

With the memory of a typical laptop or desktop computer, the limit of qubits you can create is about 26, 27 qubits.

Obtain data of quantum states

The quantum state is expressed as an array of length \(2^n\). Note that if the quantum state is formed by GPU, and if the \(n\) is large, it can become an extremely heavy operation.

#include <cppsim/state.hpp>

int main(){
    unsigned int n = 5;
    QuantumState state(n);
    state.set_zero_state();

    // If use GNU C++, obtain double_Complex array
    // If use MSVC, obtain std::complex<double> array
    const CTYPE* raw_data_c = state.data_c();

    // obtain std::complex<double> array
    const CPPCTYPE* raw_data_cpp = state.data_cpp();
}

If you want to set the quantum state directly to the specified array, it is recommended to create the corresponding quantum gate and perform it as an operation of the quantum gate.

Initialize quantum states

The generated quantum state can be initialized to a computational basis using the set_computational_basis or to a random state using the set_Harr_random_state.

Note that in Qulacs, the subscripts of the qubits start from 0, and the rightmost bit is the 0-th qubit when written as \(\ket{0000}\) (In other libraries and textbooks, the leftmost bit may be the 0-th qubit).

#include <cppsim/state.hpp>

int main() {
    unsigned int n = 5;
    QuantumState state(n);
    state.set_zero_state();
    // Initialize as |00101>
    state.set_computational_basis(0b00101);
    // Generate random initial states
    state.set_Haar_random_state();
    // Generate random initial state with specifying seed
    state.set_Haar_random_state(0);
    return 0;
}

Copy and load quantum state data

The quantum state can be copied and loaded from other quantum state data.

#include <cppsim/state.hpp>

int main(){
    unsigned int n = 5;
    QuantumState state(n);
    state.set_computational_basis(0b00101);

    // Create new quantum state by copying
    auto second_state = state.copy();

    // Create a new quantum state and copy the existing state vector
    QuantumState third_state(n);
    third_state.load(&state);
    return 0;
}

Operate classic registers

The quantum state can be read and written as a classic register.

#include <cppsim/state.hpp>

int main() {
    unsigned int n = 5;
    QuantumState state(n);
    state.set_zero_state();

    // Set the 3rd classical register as 1
    int register_position = 3;
    int register_value = 1;
    state.set_classical_bit(register_position, register_value);

    // Obtain the value of the 3rd classical register
    int obtained_value;
    obtained_value = state.get_classical_bit(register_position);
    return 0;
}

Calculate quantum states

The following operations do not change quantum states. Calculations that changes quantum states are performed by quantum gates or quantum circuits.

#include <cppsim/state.hpp>

int main() {
    unsigned int n = 5;
    QuantumState state(n);
    state.set_zero_state();

    // Calculate norm
    double norm = state.get_squared_norm();
    // Calculate the entropy when measured in z-basis
    double entropy = state.get_entropy();

    // Calculate the probability that the index-th qubit is 0 when measured in z-basis
    unsigned int index = 3;
    double zero_prob = state.get_zero_probability(index);

    // Calculate marginal probabilities
    // (Here is an example of the probability that 0,3-th qubit is measured as 0 and 1,2-th qubit is measured as 1)
    std::vector<unsigned int> value_list = { 0,1,1,0,2 };
    double marginal_prob = state.get_marginal_probability(value_list);
    return 0;
}

Calculate the inner product of quantum states

The inner product of quantum states can be calculated by the inner_product function.

#include <cppsim/state.hpp>

int main(){
    unsigned int n = 5;
    QuantumState state_ket(n);
    state_ket.set_zero_state();

    QuantumState state_bra(n);
    state_bra.set_Haar_random_state();

    // Calculate the inner product
    std::complex<double> value = state::inner_product(&state_ket, &state_bra);
    return 0;
}

Quantum Gate

Generate and operate quantum gates

The quantum gate implemented by default is generated through the function of gate_factory. This quantum gate can operate on the quantum state specified by the argument of update_quantum_state. The quantum gate generated by gate_factory is not released automatically, so you must release it.

#define _USE_MATH_DEFINES
#include <cmath>
#include <cppsim/state.hpp>
#include <cppsim/gate_factory.hpp>

int main() {
    unsigned int n = 5;
    QuantumState state(n);
    state.set_zero_state();

    // operation of X gata
    unsigned int index = 3;
    auto x_gate = gate::X(index);
    x_gate->update_quantum_state(&state);

    // Rotation by PI/2 using Y gate
    double angle = M_PI / 2.0;
    auto ry_gate = gate::RY(index, angle);
    ry_gate->update_quantum_state(&state);

    delete x_gate;
    delete ry_gate;
    return 0;
}

Quantum gates defined in the gate namespace are as following:

  • Single-qubit Pauli operation: Identity, X, Y, Z

  • Single-qubit Clifford operation: H, S, Sdag, T, Tdag, sqrtX, sqrtXdag, sqrtY, sqrtYdag

  • Two-qubit Clifford operation: CNOT, CZ, SWAP

  • Single-qubit Pauli rotation: RX, RY, RZ, RotX, RotY, RotZ, RotInvX, RotInvY, RotInvZ

  • General Pauli operation: Pauli, PauliRotation

  • IBMQ basis-gate: U1, U2, U3

  • General gate: DenseMatrix

  • Measurement : Measurement

  • Noise : BitFlipNoise, DephasingNoise, IndependentXZNoise, DepolarizingNoise

Rotation gates RX, RY, and RZ operate as Pauli rotation \(\exp(i\frac{\theta}{2}P)\) based on corresponding Pauli operator \(P\) and argument \(\theta\). Please check the API documents for details of each gate.

Definitions are as follows:

RX\(R_X(\theta) = \exp(i\frac{\theta}{2} X) = \begin{pmatrix} \cos(\frac{\theta}{2}) & i\sin(\frac{\theta}{2}) \\ i\sin(\frac{\theta}{2}) & \cos(\frac{\theta}{2}) \end{pmatrix} \)

RY\(R_Y(\theta) = \exp(i\frac{\theta}{2} Y) = \begin{pmatrix} \cos(\frac{\theta}{2}) & \sin(\frac{\theta}{2}) \\ -\sin(\frac{\theta}{2}) & \cos(\frac{\theta}{2}) \end{pmatrix} \)

RZ\(R_Z(\theta) = \exp(i\frac{\theta}{2} Z) = \begin{pmatrix} e^{i\frac{\theta}{2}} & 0 \\ 0 & e^{-i\frac{\theta}{2}} \end{pmatrix} \)

The rotation gates used in Qulacs are basically RX, RY, and RZ, but there are also RotX, RotY, and RotZ with opposite rotation directions. The definitions of these operations are as follows:

RotX\(RotX(\theta) = \exp(-i\frac{\theta}{2}X)\)

RotY\(RotX(\theta) = \exp(-i\frac{\theta}{2}Y)\)

RotZ\(RotX(\theta) = \exp(-i\frac{\theta}{2}Z)\)

Gates with opposite rotation direction to RotX, RotY and RotZ are RotInvX, RotInvY and RotInvZ.

Merge quantum gates

You can generate a new single quantum gate by merging the quantum gates that continue to operate in sequence. You have to release the synthesized gate by yourself.

#define _USE_MATH_DEFINES
#include <cmath>
#include <cppsim/state.hpp>
#include <cppsim/gate_factory.hpp>
#include <cppsim/gate_merge.hpp>
#include <cppsim/gate_matrix.hpp>

int main() {
    unsigned int n = 5;
    QuantumState state(n);
    state.set_zero_state();

    unsigned int index = 3;
    auto x_gate = gate::X(index);

    double angle = M_PI / 2.0;
    auto ry_gate = gate::RY(index, angle);

    // combine X, RY in the successive operation order
    auto x_and_ry_gate = gate::merge(x_gate, ry_gate);

    x_and_ry_gate->update_quantum_state(&state);

    delete x_gate;
    delete ry_gate;
    delete x_and_ry_gate;
    return 0;
}

Sum of quantum gate matrices

A new gate can be generated by summing gates. (Not available for gates with control-qubit, because that operation is undefined yet.)

#define _USE_MATH_DEFINES
#include <cmath>
#include <cppsim/state.hpp>
#include <cppsim/gate_factory.hpp>
#include <cppsim/gate_merge.hpp>
#include <cppsim/gate_matrix.hpp>

int main() {
    auto gate00 = gate::merge(gate::P0(0), gate::P0(1));
    auto gate11 = gate::merge(gate::P1(0), gate::P1(1));
    // |00><00| + |11><11|
    auto proj_00_or_11 = gate::add(gate00, gate11);
    std::cout << proj_00_or_11 << std::endl;

    auto gate_ii_zz = gate::add(gate::Identity(0), gate::merge(gate::Z(0), gate::Z(1)));
    auto gate_ii_xx = gate::add(gate::Identity(0), gate::merge(gate::X(0), gate::X(1)));
    auto proj_00_plus_11 = gate::merge(gate_ii_zz, gate_ii_xx);
    // ((|00>+|11>)(<00|+<11|))/2 = (II + ZZ)(II + XX)/4
    proj_00_plus_11->multiply_scalar(0.25);
    std::cout << proj_00_plus_11 << std::endl;
    return 0;
}

Special quantum gate and common quantum gate

In cppsim, the basic quantum gates are divided into the following two ways:

  • Special gate: There are dedicated speed-up functions for utilizing the special gate.

  • Common gate: The gate holds the gate matrix and operates by multiplying the matrix.

The special gate is faster than the common gate because of the dedicated functions. But in a special gate, operations that change the function of a quantum gate, such as increasing the number of control qubits, cannot be performed later. This kind of change can be made only when the special gate is transformed into a common gate, which can be realized by gate::to_matrix_gate.

Here’s an example:

#include <cppsim/state.hpp>
#include <cppsim/gate_factory.hpp>
#include <cppsim/gate_merge.hpp>
#include <cppsim/gate_matrix.hpp>

int main() {
    unsigned int n = 5;
    QuantumState state(n);
    state.set_zero_state();

    unsigned int index = 3;
    auto x_gate = gate::X(index);

    // Add control qubit so that only operates when 1st-qubit is 0
    auto x_mat_gate = gate::to_matrix_gate(x_gate);
    unsigned int control_index = 1;
    unsigned int control_with_value = 0;
    x_mat_gate->add_control_qubit(control_index, control_with_value);

    x_mat_gate->update_quantum_state(&state);

    delete x_gate;
    delete x_mat_gate;
    return 0;
}

Please check the API documents for details of the special quantum gate.

Obtain the gate matrix of the quantum gate

The gate matrix of the generated quantum gate can be obtained, but gate matrices do not include the control qubit. Especially, note that gates without gate matrix (ex. \(n\)-qubit Pauli rotation gate) require a very long time and memory to obtain the matrix.

#include <iostream>
#include <cppsim/state.hpp>
#include <cppsim/gate_factory.hpp>
#include <cppsim/gate_merge.hpp>

int main(){
    unsigned int index = 3;
    auto x_gate = gate::X(index);

    // obtain the matrix element
    // ComplexMatrix is a complex matrix type with RowMajor by Eigen::MatrixXcd
    ComplexMatrix matrix;
    x_gate->set_matrix(matrix);
    std::cout << matrix << std::endl;
    return 0;
}

Obtain information about quantum gate

Debug information of quantum gate can be shown by using ostream. Note that if the gate matrix of the quantum gate is very large, it takes a long time. Quantum gates with dedicated functions do not display their gate matrix.

#include <iostream>
#include <cppsim/state.hpp>
#include <cppsim/gate_factory.hpp>
#include <cppsim/gate_merge.hpp>

int main(){

    unsigned int index = 3;
    auto x_gate = gate::X(index);

    std::cout << x_gate << std::endl;

    delete x_gate;
    return 0;
}

Implement of common quantum gate

Cppsim implements various maps of quantum information in the following forms.

Unitary operation

Implemented as the quantum gate.

Projection operator and Kraus operator, etc.

Implemented as the quantum gate. In general, the norm of the quantum state is not preserved after the operation.

The gate can be generated by DenseMatrix.

#define _USE_MATH_DEFINES
#include <cmath>
#include <cppsim/state.hpp>
#include <cppsim/gate_factory.hpp>
#include <cppsim/gate_merge.hpp>
#include <cppsim/gate_matrix.hpp>
#include <cppsim/gate_general.hpp>

int main() {
    ComplexMatrix one_qubit_matrix(2, 2);
    one_qubit_matrix << 0, 1, 1, 0;
    auto one_qubit_gate = gate::DenseMatrix(0, one_qubit_matrix);
    std::cout << one_qubit_gate << std::endl;

    ComplexMatrix two_qubit_matrix(4,4);
    two_qubit_matrix <<
        1, 0, 0, 0,
        0, 1, 0, 0,
        0, 0, 0, 1,
        0, 0, 1, 0;
    auto two_qubit_gate = gate::DenseMatrix({0,1}, two_qubit_matrix);
    std::cout << two_qubit_gate << std::endl;
    return 0;
}

Probabilistic unitary operations

With given multiple unitary operations and probability distributions, stochastic unitary operations can be created by Probabilistic function.

#define _USE_MATH_DEFINES
#include <cmath>
#include <cppsim/state.hpp>
#include <cppsim/gate_factory.hpp>
#include <cppsim/gate_merge.hpp>
#include <cppsim/gate_matrix.hpp>
#include <cppsim/gate_general.hpp>

int main() {
    unsigned int n = 5;
    QuantumState state(n);
    state.set_zero_state();

    unsigned int index = 3;
    auto x_gate = gate::X(index);
    auto z_gate = gate::Z(index);

    auto probabilistic_xz_gate = gate::Probabilistic({ 0.1,0.2 } , { x_gate,z_gate });
    auto depolarizing_gate = gate::DepolarizingNoise(index, 0.3);

    depolarizing_gate->update_quantum_state(&state);
    probabilistic_xz_gate->update_quantum_state(&state);
    return 0;
}

CPTP-map

CPTP-map can be created by giving the CPTP function a list of Kraus operators satisfying completeness.

#define _USE_MATH_DEFINES
#include <cmath>
#include <cppsim/state.hpp>
#include <cppsim/gate_factory.hpp>
#include <cppsim/gate_merge.hpp>
#include <cppsim/gate_matrix.hpp>
#include <cppsim/gate_general.hpp>

int main() {
    unsigned int n = 5;
    QuantumState state(n);
    state.set_zero_state();

    unsigned int index = 3;
    auto p0 = gate::P0(index);
    auto p1_fix = gate::merge(gate::P1(index), gate::X(index));

    auto correction = gate::CPTP({p0,p1_fix});
    auto noise = gate::BitFlipNoise(index,0.1);

    noise->update_quantum_state(&state);
    correction->update_quantum_state(&state);
    return 0;
}

POVM

Since it is the same as Instrument in numerical calculation, it is realized as Instrument.

Instrument

In addition to the general CPTP-map operation, Instrument is an operation that obtains the array subscripts of the randomly acting Kraus operator. For example, a measurement on the Z basis is to operate on the CPTP-map consisting of P0 and P1 and know which one was operated. In cppsim, this is achieved by specifying the information of the CPTP-map and the address of the classic register in which the subscripts of the operated Kraus operator are written in the Instrument function.

#define _USE_MATH_DEFINES
#include <cmath>
#include <cppsim/state.hpp>
#include <cppsim/gate_factory.hpp>
#include <cppsim/gate_merge.hpp>
#include <cppsim/gate_matrix.hpp>
#include <cppsim/gate_general.hpp>

int main() {
    auto gate00 = gate::merge(gate::P0(0), gate::P0(1));
    auto gate01 = gate::merge(gate::P0(0), gate::P1(1));
    auto gate10 = gate::merge(gate::P1(0), gate::P0(1));
    auto gate11 = gate::merge(gate::P1(0), gate::P1(1));

    std::vector<QuantumGateBase*> gate_list = { gate00, gate01, gate10, gate11 };
    unsigned int classical_pos = 0;
    auto gate = gate::Instrument(gate_list, classical_pos);

    QuantumState state(2);
    state.set_Haar_random_state();

    std::cout << state << std::endl;
    gate->update_quantum_state(&state);
    unsigned int result = state.get_classical_value(classical_pos);
    std::cout << state << std::endl;
    std::cout << result << std::endl;
    return 0;
}

Adaptive

The operation is performed or not performed depending on the value written to the classical register. In cppsim, this is achieved by specifying a function that takes a register of type std::vector<unsigned int> as an argument and returns a bool type in the Adaptive function.

#define _USE_MATH_DEFINES
#include <cmath>
#include <cppsim/state.hpp>
#include <cppsim/gate_factory.hpp>
#include <cppsim/gate_merge.hpp>
#include <cppsim/gate_matrix.hpp>
#include <cppsim/gate_general.hpp>

int main() {
    unsigned int n = 5;
    QuantumState state(n);
    state.set_zero_state();

    unsigned int index = 3;
    auto h = gate::H(index);
    h->update_quantum_state(&state);

    auto meas = gate::Measurement(index,0);
    meas->update_quantum_state(&state);

    auto condition = [](const std::vector<UINT> reg){
        return reg[0]==1;
    };
    auto correction = gate::Adaptive(gate::X(index), condition);
    correction->update_quantum_state(&state);
    return 0;
}

CP-map

If Kraus rank is 1, please treat it as a single Kraus operator as described above. In other cases, please adjust the Kraus operator so that it becomes TP, and then adjust it by applying the Identity operator multiplied by a constant with the multiply_scalar() function.

Quantum Circuits

Construct the quantum circuit

A quantum circuit is represented as a set of quantum gates. For example, you can construct a quantum circuit as follows:

#include <cppsim/state.hpp>
#include <cppsim/gate_factory.hpp>
#include <cppsim/circuit.hpp>

int main(){
    unsigned int n = 5;
    QuantumState state(n);
    state.set_zero_state();

    // Define quantum circuit
    QuantumCircuit circuit(n);

    // Add gate to quantum circuit
    for(int i=0;i<n;++i){
        circuit.add_H_gate(i);
    }

    // Gate defined by user can also be added
    for(int i=0;i<n;++i){
        circuit.add_gate(gate::H(i));
    }

    // Operate quantum circuit to state
    circuit.update_quantum_state(&state);
    return 0;
}

Note: the quantum circuit added by add_gate is released from memory when the quantum circuit is released. Therefore, the assigned gate cannot be reused. If you want to reuse the gate given as an argument, make a copy of itself using gate.copy or use the add_gate_copy function. But in this case, you have to release the gate by yourself.

Calculate and optimize the depth of quantum circuits

By merging quantum gates into a single one, the number of quantum gates can be reduced and the time required for numerical calculations can be reduced. (Of course, the total calculation time will not necessarily be reduced if the number of target qubits is increased or if a quantum gate with a dedicated function is merged into a quantum gate without a dedicated function.)

The code below uses the optimize function to repeat merging the quantum gates of the quantum circuit until the target qubit becomes three by greedy algorithm.

#include <cppsim/state.hpp>
#include <cppsim/gate_factory.hpp>
#include <cppsim/circuit.hpp>
#include <cppsim/circuit_optimizer.hpp>

int main() {
    unsigned int n = 5;
    unsigned int depth = 10;
    QuantumCircuit circuit(n);
    for (int d = 0; d < depth; ++d) {
        for (int i = 0; i < n; ++i) {
            circuit.add_gate(gate::H(i));
        }
    }

    // 量子回路の最適化
    QuantumCircuitOptimizer opt;
    unsigned int max_block_size = 3;
    opt.optimize(&circuit, max_block_size);
    return 0;
}

Obtain debug information of quantum circuits

The same as the quantum gate, debug information of the quantum circuit can be shown by using ostream.

#include <cppsim/state.hpp>
#include <cppsim/gate_factory.hpp>
#include <cppsim/circuit.hpp>

int main() {
    unsigned int n = 5;
    unsigned int depth = 10;
    QuantumCircuit circuit(n);
    for (int d = 0; d < depth; ++d) {
        for (int i = 0; i < n; ++i) {
            circuit.add_gate(gate::H(i));
        }
    }

    // Output information of quantum circuit
    std::cout << circuit << std::endl;
    return 0;
}

Observables

Generate observables

Observables are represented as a set of Pauli operators. The Pauli operator can be defined as follows:

#include <cppsim/observable.hpp>
#include <string>

int main() {
    unsigned int n = 5;
    double coef = 2.0;
    std::string Pauli_string = "X 0 X 1 Y 2 Z 4";
    Observable observable(n);
    observable.add_operator(coef,Pauli_string.c_str());
    return 0;
}

Cooperate with OpenFermion

Observables can be generated from files in the following formats generated using OpenFermion. At this time, the observable has the minimum size necessary to generate it. For example, it is possible to generate an observable by reading an observable obtained using OpenFermion such as the following.

from openfermion.ops import FermionOperator
from openfermion.transforms import bravyi_kitaev

h_00 = h_11 = -1.252477
h_22 = h_33 = -0.475934
h_0110 = h_1001 = 0.674493
h_2332 = h_3323 = 0.697397
h_0220 = h_0330 = h_1221 = h_1331 = h_2002 = h_3003 = h_2112 = h_3113 = 0.663472
h_0202 = h_1313 = h_2130 = h_2310 = h_0312 = h_0132 = 0.181287

fermion_operator = FermionOperator('0^ 0', h_00)
fermion_operator += FermionOperator('1^ 1', h_11)
fermion_operator += FermionOperator('2^ 2', h_22)
fermion_operator += FermionOperator('3^ 3', h_33)

fermion_operator += FermionOperator('0^ 1^ 1 0', h_0110)
fermion_operator += FermionOperator('2^ 3^ 3 2', h_2332)
fermion_operator += FermionOperator('0^ 3^ 3 0', h_0330)
fermion_operator += FermionOperator('1^ 2^ 2 1', h_1221)

fermion_operator += FermionOperator('0^ 2^ 2 0', h_0220-h_0202)
fermion_operator += FermionOperator('1^ 3^ 3 1', h_1331-h_1313)

fermion_operator += FermionOperator('0^ 1^ 3 2', h_0132)
fermion_operator += FermionOperator('2^ 3^ 1 0', h_0132)

fermion_operator += FermionOperator('0^ 3^ 1 2', h_0312)
fermion_operator += FermionOperator('2^ 1^ 3 0', h_0312)

## Bravyi-Kitaev transformation
bk_operator = bravyi_kitaev(fermion_operator)

## output
fp = open("H2.txt", 'w')
fp.write(str(bk_operator))
fp.close()

The H2.txt file generated by the above Python code has the following format.

(-0.8126100000000005+0j) [] +
(0.04532175+0j) [X0 Z1 X2] +
(0.04532175+0j) [X0 Z1 X2 Z3] +
(0.04532175+0j) [Y0 Z1 Y2] +
(0.04532175+0j) [Y0 Z1 Y2 Z3] +
(0.17120100000000002+0j) [Z0] +
(0.17120100000000002+0j) [Z0 Z1] +
(0.165868+0j) [Z0 Z1 Z2] +
(0.165868+0j) [Z0 Z1 Z2 Z3] +
(0.12054625+0j) [Z0 Z2] +
(0.12054625+0j) [Z0 Z2 Z3] +
(0.16862325+0j) [Z1] +
(-0.22279649999999998+0j) [Z1 Z2 Z3] +
(0.17434925+0j) [Z1 Z3] +
(-0.22279649999999998+0j) [Z2]

You can create an observable from such a file through a function as follows:

#include <cppsim/observable.hpp>
#include <string>

int main() {
    unsigned int n = 5;
    std::string filename = "H2.txt";
    Observable* observable = observable::create_observable_from_openfermion_file(filename);
    delete observable;
    return 0;
}

Evaluate observable

An evaluation of the expected value of the observable for the state can be obtained.

#include <cppsim/observable.hpp>
#include <cppsim/state.hpp>
#include <string>

int main() {
    unsigned int n = 5;
    double coef = 2.0;
    std::string Pauli_string = "X 0 X 1 Y 2 Z 4";
    Observable observable(n);
    observable.add_operator(coef, Pauli_string.c_str());

    QuantumState state(n);
    observable.get_expectation_value(&state);
    return 0;
}

Rotation of Observable

The rotation of Observable \(H\), \(e^{i\theta H}\), is performed by Trotter expansion. num_repeats defaults as the following code, but can be optionally specified by the user.

#include <cppsim/circuit.hpp>
#include <cppsim/state.hpp>
#include <cppsim/observable.hpp>

int main() {
    UINT n;
    UINT num_repeats;
    double theta = 0.1;
    Observable* observable = observable::create_observable_from_openfermion_file("../test/cppsim/H2.txt");

    n = observable->get_qubit_count();
    QuantumState state(n);
    state.set_computational_basis(0);

    QuantumCircuit circuit(n);
    num_repeats = (UINT)std::ceil(theta * (double)n* 100.);
    circuit.add_observable_rotation_gate(*observable, theta, num_repeats);
    circuit.update_quantum_state(&state);

    auto result = observable->get_expectation_value(&state);
    std::cout << result << std::endl;
    delete observable;
    return 0;
}

Parametric Quantum Circuits

Defining a quantum circuit as the ParametricQuantumCircuit class allows you to use some functions that are useful for optimizing quantum circuits using variational methods, in addition to the usual functions of the QuantumCircuit class.

Examples of parametric quantum circuits

Quantum gates with one rotation angle (X-rot, Y-rot, Z-rot, multi_qubit_pauli_rotation) can be added to quantum circuits as parametric quantum gates. For quantum gates added as parametric gates, the number of parametric gates can be extracted after the quantum circuit is constructed, and the rotation angle can be changed later.

#include <cppsim/state.hpp>
#include <vqcsim/parametric_circuit.hpp>
#include <cppsim/utility.hpp>

int main(){
    const UINT n = 3;
    const UINT depth = 10;

    // create n-qubit parametric circuit
    ParametricQuantumCircuit* circuit = new ParametricQuantumCircuit(n);
    Random random;
    for (UINT d = 0; d < depth; ++d) {
        // add parametric X,Y,Z gate with random initial rotation angle
        for (UINT i = 0; i < n; ++i) {
            circuit->add_parametric_RX_gate(i, random.uniform());
            circuit->add_parametric_RY_gate(i, random.uniform());
            circuit->add_parametric_RZ_gate(i, random.uniform());
        }
        // add neighboring two-qubit ZZ rotation
        for (UINT i = d % 2; i + 1 < n; i+=2) {
            circuit->add_parametric_multi_Pauli_rotation_gate({ i,i + 1 }, { 3,3 }, random.uniform());
        }
    }

    // get parameter count
    UINT param_count = circuit->get_parameter_count();

    // get current parameter, and set shifted parameter
    for (UINT p = 0; p < param_count; ++p) {
        double current_angle = circuit->get_parameter(p);
        circuit->set_parameter(p, current_angle + random.uniform());
    }

    // create quantum state and update
    QuantumState state(n);
    circuit->update_quantum_state(&state);

    // output state and circuit info
    std::cout << state << std::endl;
    std::cout << circuit << std::endl;

    // release quantum circuit
    delete circuit;
}